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A Front-End Adaptation Network for Improving
Speech Recognition Performance in Packet
Loss and Noisy Environments

Yehoshua Dissen ", Shiry Yonash ', Israel Cohen

Abstract—Robust automatic speech recognition (ASR) in packet
loss and noisy environments remains a significant challenge. Large
pretrained transformer models have made notable strides in im-
proving ASR performance across diverse domains. However, con-
siderable room remains for improvement, even in moderate packet
loss and noise conditions. Enhancing these models is particularly
difficult because retraining is computationally prohibitive, and
fine-tuning introduces the risk of domain shift, which can degrade
performance in other languages or environments. We introduce a
novel method that leverages a front-end adaptation network to im-
prove word error rate (WER) performance in scenarios with packet
loss and noise. Qur approach addresses the constraints of working
with large pretrained ASR models while avoiding retraining or fine-
tuning. We connect an adaptation network to a frozen ASR model,
where the network is trained to modify corrupted input spectra
using both the loss function of the ASR model and an enhancement
loss. This strategy allows the system to adapt to packet loss and noise
without compromising the performance of the original ASR model
or generalization across domains. The method focuses on improv-
ing WER rather than signal quality or intelligibility, targeting it for
ASR applications. We conduct a comprehensive set of experiments
on various types of noise. Our results demonstrate that the adap-
tation network significantly reduces WER in all conditions while
preserving the foundational performance of the pretrained ASR
model.

Index Terms—Packet loss concealment, robust automatic speech
recognition, speech enhancement.

1. INTRODUCTION

ECENTLY, large transformer models have been utilized

for achieving state-of-the-art results in automatic speech
recognition (ASR) [1], [2], [3]. These models, trained on vast
amounts of data across multiple domains, have demonstrated
effectiveness in various domains and languages. In addition,
due to the diversity and sheer volume of the training data,
they have demonstrated robustness to various types of noise,
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including additive noise (e.g., random white noise, background
noise), isotropic noise, reverberant speech, and even packet
loss. In certain scenarios, such as recognition in white noise,
results approach human-level performance [4]. However, its
performance in challenging environments characterized by low
signal-to-noise ratios (SNRs), high reverberation times (RT60s),
or significant packet loss still leaves much room for improve-
ment.

This work focuses on the prevalent scenario where a large
pretrained transformer ASR model already exists, and the goal
is to improve the model’s performance under noisy and packet
loss conditions. The paper primarily focuses on the packet loss
scenario, but also evaluates other noises and layered noises.
Enhancing the robustness of these models under adverse acoustic
conditions is not a straightforward task. A primary challenge
arises from the integrated nature of a pseudo-language model
within the model, namely, the decoder part of the transformer.
Fine-tuning these models not only adapts to the noise but also
learns the domain of the fine-tuning data. Hence, it can easily
overfit to the domain of data you fine-tune with. For example, if
fine-tuned on noisy English data, the model might “forget” other
languages [5]. Even within the same language, the model can
improve on read speech while degrading performance on phone
call speech.

Retraining foundational ASR models from scratch to handle
adverse conditions such as noise, reverberation, or packet loss
is also impractical due to the large size of the model and the vast
amount of data required, which can demand excessive computa-
tional resources and time. An alternative approach to improving
ASR performance under noisy conditions is to utilize a packet
loss concealer or a speech enhancement model. Both packet loss
concealment and speech enhancement have been extensively
studied and shown to improve human speech intelligibility in
various contexts [6], [7], [8], [9]. These models typically aim to
fill gaps and remove noise from the signal by enhancing audio
quality, which benefits human listeners. However, the distortions
or artifacts introduced during enhancement can negatively affect
ASR model performance [10], [11].

Most single-channel speech enhancement techniques focus-
ing on ASR have shown limited performance improvements
compared to ASR systems trained on multicondition data.
Moreover, these require the ASR model to be retrained using
the enhanced audio, which demands significant computational
resources and data [12]. While there are ASR front-end Speech
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Enhancement (SE) models [13], [14], [15], and jointly trained
SE, ASR models in the time-frequency domain [16], [17],[18] or
in the time domain [19]. Retraining the ASR backend becomes
less practical with the introduction of large pretrained ASR
models. This work focuses on the case where the ASR model
already exists, and we only train a front-end network without
touching the original ASR model.

We aim to develop a simple method for improving noise
robustness for large transformer-based ASR models. We strive
to achieve this without requiring in-domain data for fine-tuning,
without compromising the model’s generality across domains
and languages, and without adding a significant number of
trainable parameters to the existing model. Importantly, our ob-
jectiveis toimprove ASR performance, prioritizing transcription
accuracy over perceptual audio quality.

To this end, we focus on the ASR input features, specifically
the spectral inputs of the model. Instead of altering the ASR
model, we propose a lightweight adaptation network that mod-
ifies the input spectrum to recover missing frames and denoise
the signal before it is processed by the ASR model. Drawing
inspiration from architectures commonly seen in SE and packet
loss concealment (PLC) models, we utilize a U-Net [20] ar-
chitecture with skip connections. However, unlike traditional
speech enhancement approaches, our focus is not on improving
audio quality for human listeners, but rather on minimizing the
word error rate (WER) for ASR. Therefore, rather than relying
on perceptual loss functions, we use the frozen transformer ASR
loss function to update the weights of the adaptation network.

This work extends our previous study [21], where we demon-
strated the effectiveness of the model in handling packet loss
scenarios. This paper expands our evaluation to include a broader
range of noise conditions, including additive noise, reverber-
ation, and packet loss, to create a more universal enhance-
ment model. We include a study of how our method affects
traditional intelligibility metrics, along with a webpage where
users can subjectively evaluate the samples. We compare to
LoRA fine-tuning. We also investigate the effects of reducing
phoneme spans and joint training across various noise scenarios,
and analyze how different noise types impact the WER. Using
Whisper [1] as our pretrained ASR model, we demonstrate
through our evaluations that our proposed framework enhances
noise robustness across multiple domains without significantly
degrading the original ASR performance.

This approach offers a practical and efficient solution to en-
hance the performance of large ASR models, such as Whisper, in
noisy environments. By freezing the weights of the ASR model
and only modifying the input spectrum, we avoid the common
pitfalls of domain overfitting while maintaining the model’s
generalizability across languages and domains. Furthermore,
our lightweight adaptation model requires minimal additional
parameters relative to the ASR models, making it computation-
ally efficient and suitable for large-scale deployment. In this
work, we investigate the limitations of this method’s effective-
ness, examining the types of noise the model can handle most
effectively and the extent to which the adaptation network can
reconstruct packet loss or noise corruption without significantly
impacting ASR performance. This comprehensive evaluation
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provides insights into the robustness of the approach across
different acoustic conditions. The main contribution of this
work is a method that enhances the robustness of foundational
ASR models to various types of corruption without altering
the underlying ASR model or compromising its results through
a lightweight adapter model. Our implementation and trained
models are available here! and a page with audio samples is
available here?

The paper is organized as follows. Section II overviews the
most relevant related work. Section III describes the formal prob-
lem setting. Section I'V describes the evaluation setup, including
the databases used and the training procedure, and Section V
shows the results. We conclude the paper in Section VI.

II. RELATED WORK

Single-channel noise-robust ASR is an active research area,
with various approaches being developed to mitigate the im-
pact of noise on automatic speech recognition performance.
Many methods focused on augmenting training data by adding
different types of noise, such as white noise, reverberation,
or babble noise. This approach enables models to generalize
more effectively in noisy environments, as demonstrated by
models trained or fine-tuned on augmented data [22], [23], [24].
Another prominent strategy for improving robustness in noisy
environments is using front-end speech enhancement models.
These models focus on improving the audio input quality by
learning a noise spectrum mask before passing it to the ASR
system. Speech enhancement has been extensively studied in
the context of improving perceptual speech quality for human
listeners, often measured through metrics such as Perceptual
Evaluation of Speech Quality (PESQ) [25] and Short-Time
Objective Intelligibility (STOI) [12]. However, although these
models improve human intelligibility, they introduce distortions
or artifacts that can negatively impact the performance of the
ASR model [10]. The challenge is that enhancing audio for
humans does not always improve the transcription of ASR
systems, resulting in limited improvements in word error rate
(WER) despite audio enhancements.

Several recent works have addressed this issue by designing
enhancement models targeting ASR performance rather than
perceptual quality. For example, Subramanian et al. [26] in-
troduced an end-to-end system that uses ASR objectives to
guide the training of a speech enhancement model. By focusing
on minimizing the WER rather than enhancing the perceptual
quality of the audio, they achieved improvements in both ASR
performance and traditional enhancement metrics. Iwamoto
et al. [27] investigated the effectiveness of jointly training an
SE front-end and an ASR backend, finding that this training
can reduce ASR errors on SE artifacts. However, it increases the
errors due to noise. Chang et al. [28] jointly trained ASR, SE, and
self-supervised learning representation to achieve SOTA results
on the CHiME-4 [29] benchmark. Yang et al. [19] proposed
a joint training framework that integrates time-domain speech

! https://github.com/MLSpeech/WhisperDenoiser
2 https://shuadissen.github.io/ASR _denoiser/
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enhancement (SE) with an end-to-end ASR system using latent
representations, eliminating the need for waveform reconstruc-
tion. To achieve this, they introduced a convolutional network
to transform the SE encoder’s latent representation into features
compatible with ASR. To improve performance, they also modi-
fied Conv-TasNet [30] into an attention-based variant. However,
none of these address the scenario where one has a foundational
ASR model that cannot be changed.

Packet loss concealment (PLC), the primary focus of this
work, is another critical area within noise-robust ASR. This
task involves recovering lost audio frames that are corrupted or
dropped during transmission. Early methods for PLC, such as
linear prediction or interpolation [31], [32], aimed to reconstruct
the missing parts of the signal based on statistical models.
With the rise of deep learning, more sophisticated approaches
have emerged, utilizing neural networks to tackle this problem.
Encoder-decoder frameworks have become a prevalent choice,
with models like those introduced by Wang et al. [33] and
Pascual et al. [34] using adversarial training to generate natural-
sounding audio in the gaps created by packet loss. Westhausen
and Meyer [35] developed a time-domain PLC model (tPLCnet)
that uses recurrent networks to predict the next frame based
on a short context buffer. Lin et al. [36] approached PLC as a
generative regression problem, utilizing convolutional encoder-
decoders with LSTM layers to predict future frames in the time
domain. More recently, diffusion models have been used [37],
[38] to generate more naturalistic sounds to fill in the gaps.
However, despite these advancements, most PLC models still
prioritize improving human intelligibility over optimizing ASR
accuracy, which limits their effectiveness in scenarios where
WER is the primary concern.

Recently, more focus has been put on ASR-based improve-
ments to improve concealment and ASR robustness. Yang
et al. [39] proposed an auxiliary loss function that encourages
the latent representations of distorted and clean signals to align,
improving packet loss concealment for ASR tasks by focusing
on generating more accurate reconstructions of the input signal.
Zhang et al. [40] introduced semantic awareness into PLC
approaches, recognizing that linguistic information can guide
more effective reconstruction of lost speech segments, facili-
tating more accurate reconstruction, particularly in scenarios
characterized by extended burst packet losses. By incorporat-
ing semantic information, this approach provides the receiving
system with contextual knowledge, enabling it to infer missing
speech elements more accurately based on meaning rather than
relying solely on acoustic reconstruction. Similarly, our method
achieves a form of semantic awareness by directly optimizing
for Word Error Rate (WER), which inherently incorporates
linguistic and contextual information. Using WER as the guiding
loss function, our adaptation network is trained to reconstruct
missing or corrupted audio to maximize transcription accuracy.

III. METHODS

This study proposes a technique that improves ASR robust-
ness to packet loss and noisy scenarios while maintaining the
pre-trained ASR architecture and weights. As stated earlier, one
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option would be to use a packet loss concealment or speech
enhancement module to reconstruct the speech and subsequently
apply ASR on the resulting signal. However, this solution is
suboptimal, as these models can introduce artifacts detrimental
to the performance of the ASR model. Here, we consider a
different approach, replacing the PLC module with a front-end
network that adapts the signal to improve ASR robustness under
packet loss and unknown noise conditions, rather than enhancing
the speech quality.

We start by presenting the notation and general setting. We
denote the speech signal or its representation (e.g., Mel spec-
trum) by X = (x1,...,xr), where x; denotes a speech sample
or mel frame and X is a sequence of 7" such elements. In our
general setting we assume that signal X is corrupted by noise
N = (ny,...,nr), where each n; is a vector of noise. Let us
also define the packet-loss operator PL, which gets as input a
speech signal and returns a corrupted speech signal. It also gets
two parameters: the start frame K and the duration .J for which
these frames are lost. Namely,

0, forallte [K,K+J—1]
X¢, otherwise.

PL(X; K, J) = { (1

Overall, in our generalized setting, the corrupted speech signal
is X = PL(X + N; K, J), where the parameters K and J, as
well as the noise type, are considered in the empirical evaluation
section. Note that we may apply the packet loss operators
multiple times on a given input.

We assume a transcript y = (y1, - .., yu ) is associated with
the speech signal, where y represents a sequence of U words or
sub-words (tokens). Note that 7" and U differ for each input and
target sequence. Our objective is to propose a model that receives
the corrupted speech X and outputs the target transcription y as
if it had received the original (unobserved) signal X.

Our model consists of two main components: a front-end
adaptation network and a frozen ASR model. We denote
the ASR model by g4 with parameter set ¢. This function
y = g¢(X) takes as input a corrupted speech signal and pre-
dicts the word (token) sequence spoken. The ASR model was
trained using a loss function denoted by Lasr(g4(X),y). Our
objective is to enhance the performance of this pre-trained ASR
on corrupted input signals, without applying any fine-tuning to
the model itself.

We aim to design an adaptation network fy with parameter
set 0. This network receives the noisy speech X and outputs an
adapted version X = f;(X), which is used as input to the ASR
model, yielding y = g¢(X). Our goal is to have WER(y,y) <
WER(y,y). We note that the generated X is tailored to improve
the ASR’s performance and may not necessarily enhance human
intelligibility.

More specifically, we propose to train the adapter network
by passing gradients from an ASR loss function through an
ASR model (but keeping the weights of the ASR model
frozen) and by adding a regularization function that ensures
the corrected signal is close to the original uncorrupted signal.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 29,2025 at 08:41:24 UTC from |IEEE Xplore. Restrictions apply.
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Formally,
minLask (95(f0(X)),¥) + (1 = W) Leg (X, fo(X)) @)

where Ly, is a regularization loss function. We emphasize
that the minimization is over the adapter network’s parameters
0, while the ASR model’s parameters ¢ remain fixed. In the
evaluation, we demonstrate the advantages of our model over
fine-tuning the parameters ¢ of the ASR model.

In this work, we focus on the state-of-the-art supervised
transformer-based ASR model Whisper [1]. In this case, the
input X is the Mel spectrum, and the model is trained with the
cross-entropy loss function Leg(gs(X),y) . For the adaptation
network, we use a convolutional U-net architecture [20]. While
our experiments focus on Whisper due to its strong performance,
multilingual coverage, and public availability, the proposed
framework is not restricted to Whisper or to mel-spectrogram in-
puts. For ASR systems such as wav2vec2.0 [41] or HUBERT [42]
that operate on raw waveform inputs, our method can be adapted
by replacing the mel-to-mel U-Net with a raw-to-raw front-end
model architecture, such as Demucs [43] or Conv-TasNet [30].
Moreover, even though Whisper uses cross-entropy loss, models
trained with connectionist temporal classification (CTC) losses,
as is common with wav2vec 2.0 and HuBERT, are fully dif-
ferentiable and can support joint training with our front-end
adaptation strategy.

The adaptation network is trained with two loss functions.
The first is the ASR model’s principal loss function, which for
Whisper is cross-entropy Lcg. This loss function guides the
adapter network toward generating a spectrum that improves
token classification accuracy. However, we found that training
with ASR loss alone sometimes resulted in unstable conver-
gence. While WER initially improves, it could suddenly degrade
due to large gradients from the ASR model disrupting training
or the model learning degenerate spectrogram transformations
that momentarily reduce loss but ultimately harm ASR perfor-
mance. To mitigate this, we introduced a secondary loss term:
an L loss component between the original signal X and the
adapted signal fe(X). This regularization prevents the model
from generating unrealistic spectrograms by ensuring that some
of the loss penalizes extreme spectral deviations.

Empirically, we found that weighting the loss at approxi-
mately 1/50th of the ASR loss provided the best stability-
performance tradeoff. This small weighting stabilized training
without interfering with the primary optimization objective. So
the final loss function takes the following form:

min ALee (90(/o(X),y)) + (1= L1 (X, [o(X)) . 3)

The adaptation network is a fully convolutional U-net with
skip connections and a residual block-based bottleneck. Down-
scaling is performed using max-pooling, and upscaling is
achieved through nearest-neighbor resizing followed by a convo-
lutional layer. The input to the ASR model is a mel-spectrogram;
hence, the adapter network is designed to receive the mel-
spectrogram of the noisy signal X and output an adapted mel-
spectrogram X. This process is illustrated in Fig. 1.
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Lcg

4

ResNet block
L L]
! . fo
ResNet block
L X
Fig. 1. Model Architecture where X is the corrupted spectrum, X is the clean

spectrum, g, is the frozen asr model and fy is the trainable adapter model.

IV. EVALUATION SETTINGS

In this study, we aim to focus on the approach and ensure we
do not confuse results with model improvements, complexity,
or data-related artifacts, such as domain overfitting. For these
reasons, we selected an existing U-Net architecture for the model
and utilized Librispeech as our training data, while testing on
a diverse range of domains. Essentially, we aim to explore the
boundaries of this method by assessing its ability to reconstruct
or denoise using ASR loss from a frozen model, without relying
on in-domain data and without adding excessive parameters to
the model 2.

A. Noise Types

In this study, we focus on these additive and interruption
noises.

Packet Loss: In digital communications, packet loss results
from the loss of bits of data during transmission, leading to
incomplete auditory signals. This results in gaps or distortions

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 29,2025 at 08:41:24 UTC from |IEEE Xplore. Restrictions apply.
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(a) Original spectrogram.

Fig. 2.
spectrogram. (b) Corrupted spectrogram. (c) Recovered spectrogram.

in speech signals, significantly hampering the ASR system’s
ability to process spoken input accurately.

White Noise: White noise is uniformly distributed across all
frequencies, presenting as a constant background sound.

Pub Noise: Characterized by the sound of multiple voices
speaking simultaneously, pub noise is common in crowded
environments. It introduces a complex mixture of speech-like
sounds that can confuse ASR systems.

Reverberation: Reverberation is the persistence of sound after
it is produced, caused by reflections from surfaces such as walls,
ceilings, and floors. This prolongation of sound can blur speech
signals, making it challenging for ASR systems to recognize
words accurately.

B. Datasets

For training, we use the 960 hours of English LibriSpeech [44]
data with various types of corruption applied to the data. We
utilize multiple datasets from diverse domains to assess the
method’s robustness. A subset of ALLSSTAR [45], which is
a collection of L1 Mandarin speakers speaking English [4], and
Fleurs [46] for testing on multiple languages. Additionally, we
evaluated the models on the blind set from the Interspeech 2022
Audio Deep PLC Challenge [47] and the validation set from the
ICASSP 2024 Audio Deep PLC Challenge [48] for evaluating
the PLC. We do not report improvements on the LibriSpeech
test, as they are not significant since the improvements can be
attributed to overfitting to the training domain.

1) Packet-Loss: For the packet-loss simulation, we randomly
zero out frames based on two probabilities: a drop frequency (the
percentage of frames that are zeroed out per utterance) and a
probabilistic distribution that controls the length of consecutive
frame losses. A single utterance may experience multiple spans
of packet loss. During training, we utilize a drop frequency
distribution, and each sample loaded is assigned a specific drop
rate. For inference and reporting purposes, we duplicate the test
set across multiple fixed drop frequencies. Due to the nature of
the span length distribution, there may be slight variations (up to
atenth of a percent) from the fixed rate observed. When reporting
the packet loss percentage, we refer to the total percentage of lost
frames in the utterance. The Interspeech 2022 [47] and ICASSP
2024 [48] Audio Deep PLC Challenges have predetermined
packet loss rates, which were created by collecting traces of

(b) Corrupted spectrogram.

(c) Recovered spectrogram.

Example of original, corrupted, and recovered spectrograms of the utterance “flowers can grow in the pot” taken from the ALLSSTAR dataset. (a) Original

packet losses from real Microsoft Teams calls, and we utilize
these as is.

2) Additive Noise: In the additive noise scenarios, during
training, each recording was either left alone or overlaid with
random white noise or randomly sampled babble noise from
YouTube videos. The noise was set at an SNR of either 2, 4,
6, or 8 dB. During inference we duplicate the evaluation sets
and overlay them with random white noise or pub noise from
the Audio Degradation Toolbox [49] used in [1] with SNR from
—4 dB to 8 dB insteps of 2dB (—4 dB, —2dB, 0dB, 2 dB, 4 dB,
6 dB, 8 dB) in addition to the original recordings without noise
(quiet, Q). The set from [4] includes a prepared set of audio files
with random white noise at various SNRs (from —4 to 8 dB), so
we do not add anything here.

3) Reverberation: In the reverberation scenarios, each
recording was convolved with real and simulated room im-
pulse responses (RIRs) from the Multichannel Impulse Re-
sponse Database [50] and the Room Impulse Response and
Noise Database [22]. For inference, the evaluation sets were
duplicated, and each set was convolved with RIRs of different
reverberation times (RT60), ranging from mild (0.1 seconds)
to severe (1.5 seconds). The original clean recordings, without
reverberation, were also evaluated for comparison.

C. Frozen ASR Models

Whisper comes in five sizes with increasing parameters: tiny
(39 M), base (74 M), small (244 M), medium (769 M), and large
(1550 M). These are all transformer encoder-decoder models.
Some also come in two varieties: English only or multilingual.
For our experiments, we only use the multilingual models. For
computational reasons, we ran most of the ablation experiments
on the base model. However, we also report some on the Whisper
large-V2 model, which is likely of more interest. In all evalu-
ations, we used the same Whisper parameters for decoding: a
beam size of 5, no-timestamps set to True, and manually set the
language.

D. Model Specs

Our adapter model utilizes three downsampling and upsam-
pling layers, each reducing the size by 50%, with six ResNet
blocks serving as the bottleneck layers. Additionally, there are
single-input and single-output convolutional layers that retain
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the same dimensions. This model has 7.5 million trainable
parameters, making it a negligible addition to Whisper.

V. RESULTS

In this section, we comprehensively evaluate our model under
various conditions and configurations. We assess its perfor-
mance across distinct noise scenarios, including white noise, pub
noise, reverberation, packet loss, and more complex combina-
tions of layered noise. We compare the performance of various
Whisper model sizes. Additionally, we benchmark our model
against established speech enhancement systems and packet loss
concealers, and evaluate its performance relative to fine-tuning
and LoRA fine-tuning.

A detailed analysis of the implications of dropping different
lengths of phoneme spans, measuring Word Error Rate (WER),
and insertions, deletions, and substitutions is presented. We
also examine how various loss functions affect the model’s
performance, and test whether adapting to the specific noise
condition helps vs. a universally trained model. Furthermore,
we demonstrate the versatility of our approach by testing it
on multiple datasets, ensuring a thorough evaluation across
diverse scenarios, and assessing its applicability to real-world
conditions. For all our models, the only training data used was
English LibriSpeech data. So all results on multilingual test sets
are there to show that the model was able to retain its generality,
and that our adapter model was able to isolate the noise, learn
how to filter it, and not overfit to the training domain.

A. Stand Alone PLC

We start by evaluating the model as a stand-alone PLC. In
this section, we present the evaluation of the proposed method
and analyze the effect of different loss functions on WER in the
packet loss scenario. We demonstrate the relative improvement
of the proposed method over the unchanged baseline Whisper
models, and recently published, open-source PLC models [35]
and [51]. We then evaluate the model’s robustness to different
domains and compare it to fine-tuning Whisper. In all the ex-
periments, the Whisper baselines refer to the original models
with no PLC applied, to keep the dimensions the same, we use
zero-fill for the dropped frames.

Figs. 3 and 4 present the performances of Whisper base and
Whisper large-v2, respectively, on the original mel-spectrums
in comparison with the spectrums generated by our adaptation
networks and by PLC models FRN and tPLCnet. The graphs
present WER for various packet loss rate (PLR) values on the
ALLSSTAR dataset. We note that the vanilla Whisper large
model is more robust to frame loss. It starts to seriously degrade
only at PLRs larger than 20%, whereas the base model starts
degrading immediately.

We present the effect of training the adaptation network with
each loss function. Specifically, we compare the performance
while training (i) solely using the CE loss function, Lcg, where
the gradients flow from Whisper (noted as CE only); (ii) solely
L loss between the clean and lossy signals without referencing
Whisper (noted as L1 only), which can be seen as similar to
the TF-Unet in [52]; and (iii) a combined loss of Lcg and
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Whisper base

tPLCnet

FRN

PL train: L1 only

PL train: CE only

PL train: Ours

All augmentations train: Ours

100
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Packet loss rate
Fig. 3.  'WER of different models on ALLSSTAR with various PLRs. All the

decoding is done with the Whisper base. FRN refers to Nguyen et al. [51],
tPLCnet refers to Westhausen and Meyer [35]. PL train indicates packet loss
only training. All augmentations refer to training with reverberations, white and
pub noise, and packet loss.
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Fig. 4.  'WER of different models on ALLSSTAR with various PLRs. All the
decoding is done with Whisper large-v2. FRN refers to [51], tPLCnet refers
to [35]. BTA refers to adaptation networks trained on the Whisper base but
connected to the Whisper large-v2.

L; (CE + L1). We also compare packet loss training alone
vs combined noisy and packet loss training indicated by the
PL and all augmentation trains, respectively. We wanted to
see if single-condition training would result in better results
on that condition. We can see here that training with multiple
augmentations resulted in better performance than sole packet
loss training. The large-v2 model was trained solely on packet
loss.

All methods improve WER over the original Whisper model,
with the cross-entropy (Lcg) loss yielding more significant
improvements than the L; enhancement loss. However, the
best performance is achieved when both losses are combined.
The L, loss acts as a regularizer, preventing instability and
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TABLE I
COMPARISON OF WER FOR DIFFERENT LANGUAGES USING WHISPER BASE AND LARGE-V2
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unrealistic spectrogram transformations, while the Lcg loss
directly optimizes for ASR performance.

Empirically, we found that weighting the L, loss at approx-
imately 1/50th of the ASR loss provided the best tradeoff.
Assigning too much weight to L; degraded performance since
Lcg is the primary driver of WER improvement. Conversely,
using too little L; loss made it ineffective in stabilizing training.
The selected weighting was small enough to avoid interfering
with ASR optimization while preventing the model from entirely
ignoring the L, loss. Finally, training with all noises denoted
‘All augmentations train: Ours’ improved the packet loss sce-
nario over training with packet loss alone. In Fig. 4, we also
presented the performance of the adaptation network trained
on the gradients of the base model (the one that is depicted in
Fig. 3) but connected and evaluated with Whisper large-v2. In
Fig. 4, we denote these models as Based Trained Adaptation
(BTA) and label them with Ours: CE (BTA) and Ours: CE+LI
(BTA)). Interestingly, training the model using Whisper base
and connecting it to Whisper large-v2 gets better results than
the models trained directly using Whisper large-v2. We assume
this is because the gradients of the base model are easier to
handle and, therefore, more effectively influence the adaptation
networks. This suggests that better training parameters exist for
the large model. We defer this issue for further research. This
example underscores the broader principle that applying ASR
metrics in PLC model training can significantly enhance ASR
performance across various models.

Furthermore, the graph shows the WER of FRN [51] and
tPLCnet [35]. tPLCnet is a time-domain many-to-one RNN
model for PLC trained with a combined magnitude and complex
mean absolute error loss in the time-frequency domain. We ran
the large version of this model on the corrupted files and then
decoded them with Whisper (base and large). FRN is an autore-
gressive RNN-based PLC model trained with a multi-resolution
STFT loss. The model does not require additional inputs such
as a loss mask, and conceals the signal in a blind fashion. The
graph shows that these methods both improve the WER at a
similar rate, with tPLCnet having the slight edge. However,
the models trained using ASR metrics significantly improve the
WER.

Whisper Size Base Large-V2
Packet Loss Rate Model French | German | Russian | Spanish | French | German | Russian | Spanish
0% Whisper 24.7 17.2 20.3 10.3 7.2 4.6 6.4 3.7
Ours 25.9 17.8 21.6 10.6 7.6 4.7 6.4 3.7
5 Whisper 29.1 20.8 24.6 12.7 7.5 4.7 6.5 3.7
Ours 274 18.9 22.8 11.1 7.8 4.8 6.7 3.9
10% Whisper 338 253 28.7 15.8 8.5 5.0 6.8 3.9
Ours 28.1 19.9 23.9 11.4 8.1 5.0 6.8 3.9
20% Whisper 48.6 39.0 39.1 247 10.3 6.0 79 42
Ours 31.0 23.1 26.7 12.6 8.8 5.7 7.5 4.1
30% Whisper 69.5 60.7 53.7 38.3 16.0 8.3 11.5 53
Ours 34.6 25.9 30.3 15.0 9.9 6.3 8.8 4.4
40% Whisper | 104.9 102.2 75.6 572 27.5 13.4 18.2 7.5
Ours 39.5 31.2 35.8 17.7 12.3 7.6 9.9 5.2
50% Whisper | 126.7 141.2 100.8 89.2 483 26.4 34.4 12.7
Ours 46.9 38.6 42.8 23.1 15.5 10.3 12.7 6.2
60% Whisper | 124.6 140.4 121.1 127.9 71.7 51.8 61.5 26.6
Ours 57.6 48.3 54.1 30.9 20.6 15.5 19.1 9.4
TABLE I

COMPARISON OF WER FOR DIFFERENT MODELS ON THE 2022 PACKET LOSS
CHALLENGE BLIND SET

Model WER% (base) | WER% (large-v2)
Whisper 24.0 15.4
tPLCnet [35] 20.4 16.2
FRN [51] 21.8 16.2
Ours 18.1 14.2
TABLE III

COMPARISON OF WER FOR DIFFERENT MODELS ON THE 2024 PACKET LOSS
CHALLENGE VALIDATION SET

Model WER% (base) | WER% (large-v2)
Whisper 36.1 23.1
tPLCnet [35] 30.0 25.3
FRN [51] 30.1 24.0
Ours 29.7 20.5

To ensure that our evaluation includes conditions reflecting
modern wireless and VoIP networks, in Tables II and III, we
compare the WER of the baseline Whisper models, tPLCnet [35]
(large), FRN [51], and Ours on the blind set from the Interspeech
2022 PLC Challenge [47] and the validation set from the 2024
PLC Challenge [48]. The Interspeech 2022 and ICASSP 2024
Audio Deep PLC Challenges have predetermined packet loss
rates derived from real packet traces captured in Microsoft
Teams video conferencing sessions. As shown, tPLCnet and
FRN reduce the WER compared to the baseline model, with
tPLCnet having a slight edge. However, neither approach im-
proves upon Whisper large, whereas Ours achieves the best
performance in both scenarios.

To further illustrate the model’s robustness across different
domains and to demonstrate that this training method does
not negatively impact the performance of the original Whis-
per models — unlike fine-tuning, which can degrade a model’s
performance in other domains or languages — we compare the
WER of our model to that of the original Whisper models. This
comparison is made using multiple languages randomly selected
from the Fleurs dataset [46], as shown in Table 1. Here, the pat-
tern is similar to the results on the ALLSSTAR dataset, as shown
in Figs. 3 and 4: the base model starts degrading immediately,

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on June 29,2025 at 08:41:24 UTC from |IEEE Xplore. Restrictions apply.



2182

TABLE IV
COMPARISON OF WER FOR FINE-TUNING VS LORA OURS USING WHISPER
BASE

Dataset ALLSSTAR Spanish

PLR 0 0.2 0.4 0 0.2 0.4
Whisper 184 378 700 | 10.3 247 572
fine-tune 249 271 318 | 895 91.1 945
LoRA =16 | 29.8 392 538 | 892 916 950
LoRA oo =4 18.6 333 586 | 114 226 478
Ours 187 208 263 | 107 12.6 17.7

and the large only after 20% PLR, whereas Ours, other than a
slight degradation in the zero PL scenario, improves results for
all PLRs in all languages. It is important to note that if there is
no packet loss, using the original Whisper model is preferable,
as it has been trained on a vast amount of clean and diverse
speech data. However, we include the zero PL results because
our model is designed as a universal enhancement front-end that
may still provide benefits in real-world scenarios where other
degradations, such as reverberation or additive noise, are present.
In such cases, even without packet loss, our approach could
still improve ASR performance by mitigating these additional
distortions.

1) Fine-Tuning: Next, to highlight the advantages of our
method over both full fine-tuning and parameter-efficient fine-
tuning (PEFT), we conducted experiments where Whisper was
fine-tuned using the same noisy LibriSpeech-based training data
that was used to train our adaptation network. The front-end
adaptation model was not included in this setup. This allows
for a direct comparison between our approach and a conven-
tional fine-tuning baseline. The results aligned with our initial
hypotheses. While fine-tuning led to substantial improvements
on the LibriSpeech test set, it came with significant tradeoffs. As
shown in Table IV, the fine-tuned model suffered a severe drop in
performance on ALLSSTAR, an English dataset from a different
domain, in the clean (no packet loss) condition. Additionally, it
lost its ability to generalize across languages, as seen in Table IV
on Spanish speech. However, under packet loss conditions, the
fine-tuned model showed improvements, surpassing the baseline
model when the packet loss rate became sufficiently high.

For PEFT, we employed Low-Rank Adaptation (LoRA) [53]
where rank = 16. Unlike full fine-tuning, LoRA retains the
original model parameters, meaning we get the original model’s
output if we scale the LoRA adaptors to zero. This should limit
the model’s degradation in domains different than the training.
However, our experiments revealed that LoRA does not provide
aviable middle ground. With a small alpha (low-rank adaptation
weight), improvements under packet loss were only marginal.
As we increased alpha, the degradation in the clean (no packet
loss) condition grew much faster than the improvements in
packet loss scenarios. This resulted in no optimal setting where
LoRA effectively balances baseline performance and robustness
to packet loss.

In contrast, our method consistently outperformed both fine-
tuning and LoRA across all packet loss conditions while main-
taining performance on clean speech and preserving generaliza-
tion to new domains and languages. As seen in Table IV, our
approach achieved the best WER across different packet loss
rates, vastly outperforming the fine-tuning methods.
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Fig. 5. WER and total substitutions, deletions, and insertions counts for
dropped phoneme spans on the ALLSSTAR database using Whisper and our
models.

2) Long Duration PL: To further investigate the in-painting
capabilities of our model and test its performance in long-
duration packet loss, we used the ALLSSTAR dataset. We
processed it with the Montreal Forced Aligner [54]. Using the
phoneme alignments generated by the forced aligner, we system-
atically dropped random sequences of consecutive phonemes
from each utterance, varying the length from 1 to 10 phonemes.
Each utterance was processed 10 times, once for each phoneme
span length. We then evaluated the performance of the Whis-
per model both on the original mel spectrogram with dropped
phonemes (i.e., missing phoneme spans are zeroed out) and on
the adapted mel spectrogram produced by our front-end model,
which attempts to reconstruct missing phoneme spans. For
evaluation, we measured the overall WER and its components:
deletions, insertions, and substitutions.

As shown in Fig. 5, our model consistently reduces the WER
across all dropped span lengths compared to the baseline model.
More interestingly, the breakdown of error types provides deeper
insight into how our model handles different error patterns.
Deletions: As expected, deletions increase sharply as the length
of the dropped phoneme spans grows. However, with our model,
the rate of increase is slower, indicating that it can incorporate
some level of semantic understanding to infer and reconstruct at
least part of the missing speech signal with the correct phonemes
and words, thereby reducing outright deletions. Importantly,
deletions contribute the most to WER: our model consistently
reduces deletions by roughly an absolute 10% across different
packet loss rates, demonstrating its effectiveness at recovering
missing speech.

Insertions: The Whisper baseline shows a steady decline in in-
sertions as span length increases. This is because, when phoneme
spans are missing, Whisper produces fewer incorrect insertions,
effectively leaving gaps in the transcription. In contrast, our
model actively reconstructs missing content, sometimes insert-
ing phonemes or words to compensate for the missing spans.
This explains the slightly higher insertion rate: our model does
not ignore gaps but attempts to predict what should have been
there. However, insertions remain a very small component of the
overall error. Even at its worst, the insertion rate of our model is
only 3.5%, compared to Whisper’s 2%, a negligible difference
compared to the 10% absolute reduction in deletions.
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TABLE V
EXAMPLES OF SUBSTITUTIONS IN RECONSTRUCTED SPEECH

Modified Sentence

The mailman put the letter
The fire was a bit hot

The children went to the train
They carry their shopping bags
The dog is chasing the dog

Original Sentence

The mailman brought a letter
The fire was very hot

The children waved at the train
They carried some shopping bags
The dog is chasing the cat
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Fig.6. STOI of different models on ALLSSTAR with various packet loss rates.
FRN refers to Nguyen et al. [51], tPLCnet refers to Westhausen and Meyer [35].

Substitutions: Substitutions initially remain lower than the
baseline for spans up to 4 phonemes, implying that our model
effectively reconstructs short missing segments. However, the
substitution rate increases beyond this point (approximately 2
words in length). This suggests that when the missing context is
too large, for the same reason as the insertions, the model begins
hallucinating incorrect phonemes or words, leading to more
substitutions. Table V provides examples from the ALLSSTAR
dataset, illustrating how the model occasionally substitutes
words in reconstructed speech with words that are logical to
insert based on the context. Despite this, substitutions are still
secondary to deletions in contributing to WER. The increase in
substitutions beyond 5-6 phoneme spans reflects the attempt of
the model to recover from severe data loss, where the model can
fill in the wrong words.

Overall, the analysis of error types aligns with expected
behavior. As the model attempts to recover missing speech, dele-
tions decrease since it successfully reconstructs lost phonemes.
At the same time, the insertions and substitutions increase as
a natural consequence of its objective. Unlike the Whisper
baseline, which transcribes what remains in the input, our model
actively reconstructs missing speech. This means it occasionally
fills in gaps with words that seem contextually plausible but are
incorrect, leading to a rise in insertions and substitutions.

3) Intelligibility Metrics: To further analyze the output of
the model, we evaluate the adapted mel spectrograms using tra-
ditional intelligibility metrics. In Fig. 6, we compare the Short-
Time Objective Intelligibility (STOI) [55] scores across different
models: two open-source packet loss concealers (FRN [51] and
tPLCnet [35]), the baseline Whisper model using zero-filled
packet loss regions, and our adaptation network.

2183

Unlike FRN and tPLCnet, which operate in the time domain,
our model only produces a mel spectrogram, which is inherently
a lossy representation. Because of this, we are at a disadvantage
when evaluating STOI scores, as errors could stem either from (i)
the lossy nature of the mel spectrogram reconstruction itself or
(ii) the adaptation network modifying the spectrogram specif-
ically to benefit ASR performance, potentially at the expense
of intelligibility. However, since our goal is to improve Word
Error Rate (WER) for ASR rather than human intelligibility,
this tradeoff is not a concern.

To reconstruct a waveform from our adapted mel spectro-
grams, we estimate the power spectrum and apply two different
phase reconstruction methods: (1) using the original clean au-
dio’s phase and (2) using the Griffin-Lim algorithm [56]. These
reconstructions provide an approximate lower and upper bound
for intelligibility metrics when compared to any trained vocoder.
The degradation from this process can be seen in Fig. 6, noted as
Original Phase Reconstructed and Griffin Lim Reconstructed,
where we took the original clean signals and extracted mel
spectrums and then reversed the process with either the original
phase or Griffin Lim estimation and plotted their STOI scores
compared with the original clean signals.

Fig. 6 shows that FRN and tPLCnet consistently outperform
the zero-filled baseline across all packet loss rates. Our model
surpasses the zero-filled audio in terms of STOI scores at packet
loss rates above 10% for the original phase reconstruction and
above 30% for the Griffin-Lim reconstruction. Notably, our
model outperforms both FRN and tPLCnet in high packet loss
scenarios, despite working within the constraints of a mel spec-
trogram representation. This suggests that while our approach is
not optimized for intelligibility, it still offers benefits in packet
loss conditions. However, our model achieves lower STOI scores
in lower packet loss scenarios than FRN and tPLCnet. This
aligns with the expectation that optimizing for ASR performance
does not necessarily align with optimizing for perceptual in-
telligibility. Fig. 3 shows that our model achieves significantly
better WER than the other PLC methods. Since our approach
is explicitly geared toward improving ASR robustness rather
than reconstructing high-quality waveforms, reducing STOI for
lower packet loss rates is an expected and acceptable outcome.

In Fig. 7, we use Perceptual Evaluation of Speech Quality
(PESQ) [25], a widely used objective metric that assesses speech
quality by comparing degraded audio to a reference clean signal.
An important observation is the degradation caused by the mel
spectrogram reconstruction itself. The X markers in Fig. 7 indi-
cate PESQ scores for the original clean waveforms and the two
reconstructed versions. When the clean audio is converted to a
mel spectrogram and then reconstructed using either the original
phase or Griffin-Lim estimation, PESQ scores drop significantly,
even though no actual packet loss corruption is present, and
without applying our model. This demonstrates that the mel
spectrogram inherently reduces perceptual quality, independent
of our model. As shown in Fig. 7, tPLCnet achieves the highest
PESQ scores across most packet loss rates, aligning with its
strong STOI performance, while FRN performs similarly to the
zero-filled baseline. Our model, however, yields consistently
lower PESQ scores across all packet loss rates. This is expected,
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Fig. 7. PESQ of different models on ALLSSTAR with various packet loss

rates. FRN refers to Nguyen et al. [51], tPLCnet refers to Westhausen and
Meyer [35].

as the model is not designed to optimize perceptual speech
quality but to enhance ASR robustness. Since PESQ penalizes
unnatural modifications and artifacts, our approach — focused on
improving ASR transcription rather than producing high-quality
audio — naturally results in lower PESQ scores.

The conclusion drawn from these two metrics is that our
model achieves higher STOI scores because it prioritizes intel-
ligibility, which is beneficial for ASR performance. The model
enhances phonetic and linguistic clarity, ensuring that speech
remains recognizable even under packet loss conditions. Con-
versely, our model yields lower PESQ scores because it does
not optimize for perceptual sound quality. Unlike traditional
packet loss concealment models designed to produce natural-
sounding speech, our approach focuses solely on improving
ASR robustness. As a result, it does not attempt to preserve the
fine details that contribute to perceptual quality, leading to lower
PESQ scores. Ultimately, these results highlight the fundamental
tradeoff in our approach: maximizing ASR performance at the
expense of perceptual fidelity.

To complement these results, we provide audio samples of
reconstructed speech at.> The page includes examples of our
model, FRN, tPLCnet, and zero-filling under various packet
loss conditions, reconstructed using both the original phase and
Griffin-Lim methods. This allows for a qualitative assessment
of the tradeoffs between intelligibility and ASR performance.

B. Additive Noise and Reverberation

To evaluate the performance of our adapter network in han-
dling different types of noise, we first tested the model on
isolated noise conditions: white noise, pub noise, and reverbera-
tion. These scenarios represent typical real-world environments,
where a single type of distortion may dominate the audio signal.

As shown in Figs. 8, 9, and 10, we compare our model to the
baseline Whisper model, to Demucs [43], a state-of-the-art real-
time speech enhancer in the waveform domain and SGMSE [57]
a diffusion model for dereverberation and noise supression. We
also evaluated our model, which was trained only on L1 loss and
explicitly trained on each noise type.

3 https://shuadissen.github.io/ ASR _denoiser/
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Fig.8. WER of different models on ALLSSTAR with various pub noise SNRs.
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Fig. 9.  WER of different models on ALLSSTAR with various white noise
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Fig. 10. WER of different models on ALLSSTAR with various RT60s. All

the decoding is done with the Whisper base.

Several key observations can be made in the white noise
scenario, shown in Fig. 9. Our model consistently outperforms
the baseline Whisper model, while applying Demucs speech
enhancement degrades performance. Interestingly, training the
model on various noise types, labeled combined train, rather
than just white noise, labeled white train only, further improves
performance in this setting, demonstrating the benefits of multi-
noise training. Finally, training with ASR loss results in better
performance than training with L1 loss alone, with the latter
performing worse than the baseline Whisper model in higher
SNRs.
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Fig. 11.  STOI of different models on ALLSSTAR with various RT60s. DE-
MUCS refers to [43], SGMSE refers to [57].

In the case of pub noise, shown in Fig. 8, characterized by
overlapping speech and dynamic background sounds, our model
indicates only minor improvement in lower SNRs and essentially
no improvement in higher SNRs. This suggests that the Whisper
ASR model is already quite robust to this type of noise. Addi-
tionally, the non-stationary nature of pub noise likely makes
it difficult for our model to learn meaningful adaptations. We
also compare with other enhancement models, Demucs, and two
different SGMSE+ models, 1 trained on VoiceBank-DEMAND
and the other trained on WSJO-CHiMES3. All 3 models degrade
the WER results over the Whisper baseline.

Lastly, in the reverberant setting shown in Fig. 10, our model
offers a slight advantage over the baseline. SGMSE+ diffusion
model trained on WSJO-REVERB improves the results the most.
However, the sharp deterioration in performance when using L1
loss or Demucs enhancement is more striking, both of which
fall below the baseline results. This indicates that reverberation
poses a particular challenge for approaches that rely on wave-
form enhancement or L1-based training, inserting enhancement
artifacts that are difficult for the ASR to overcome.

1) Intelligibility Metrics: To further understand the results,
we analyze traditional ineligibility metrics. Fig. 11 presents
STOI scores across different reverberation times (RT60) for var-
ious models. This allows us to assess how well each method pre-
serves speech intelligibility in increasingly reverberant environ-
ments. As RT60 increases, STOI scores steadily decline across
all models, as expected. All models outperform the corrupted
speech. DEMUCS achieves higher STOI scores for higher RT60
values. SGMSE, a diffusion-based model for speech enhance-
ment, performs best in low RT60s but falls below DEMUCS in
higher RT60s. Our model (Ours Original Phase and Ours Griffin
Lim) both outperform DEMUCS for all RT60 and SGMSE for
higher RT60s, indicating our model performs well at preserving
intelligibility.

Fig. 12 presents PESQ scores across the same RT60 condi-
tions. Unlike STOI, PESQ evaluates overall perceptual quality
rather than just intelligibility. The results show that DEMUCS
performs similarly to the corrupted version, and SGMSE de-
grades sharply, matching ours at around 0.5 RT60. Our model
exhibits significantly lower PESQ scores, similar to our observa-
tions in the packet loss experiments. This is expected, as our ap-
proach is not designed to produce high-quality, natural-sounding
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Fig. 12.  PESQ of different models on ALLSSTAR with various RT60s.
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Fig. 13.  WER of whisper base and our model on ALLSSTAR with various
pub noise SNRs and PLRs. SNR Q refers to the quiet scenario with no added
noise.

speech but to optimize ASR performance. These results indicate
that low PESQ scores don’t affect the WER performance, as both
ours and SGMSE improve WER with very low PESQ.

These results reinforce the same tradeoff in packet loss condi-
tions: our model prioritizes intelligibility, leading to high STOI
scores, but does not optimize for perceptual quality, resulting in
lower PESQ scores.

C. Layered Noise

In this section, we examined how the model performs when
exposed to both packet loss and random white noise, pub noise,
or reverberant data simultaneously. The layered noise scenarios,
shown in Figs. 13, 14, and 15.

Fig. 14 depicts the White Noise and Packet Loss scenario:
Our model consistently outperforms the baseline Whisper model
for white noise combined with packet loss. Our model makes
better use of the available signal at lower packet loss rates,
with WERs remaining lower even as noise increases. This is
evident from the smaller SNR gaps between conditions (e.g.,
SNR 2 and SNR 4) in our model compared to the baseline. The
baseline model shows a greater dependence on cleaner signals
to recover, resulting in a more considerable WER increase when
noise is introduced. In contrast, our model experiences a smaller
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Fig. 14.  WER of different models on ALLSSTAR with various white noise
SNRs. All the decoding is done with Whisper base. SNR Q refers to the quiet
scenario with no added noise.
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Fig. 15.  WER of whisper base and our model on ALLSSTAR with various
RT60 levels and PLRs.

rise in WER as noise intensifies, particularly in moderate SNR
conditions. It highlights its ability to adapt to environments
where moderate noise coexists with significant packet loss.
However, as the packet loss rate exceeds 50%, WERs for both
models begin to converge, and the differences between SNR
levels become less meaningful, with both models approaching a
WER of 100%, and the signal degradation becomes too severe
for either model to recover effectively, regardless of the noise
level.

Fig. 13 depicts the Pub Noise and Packet Loss scenario: In
the zero packet loss scenario, both models exhibit slightly more
resilience to pub noise than white noise. However, in the packet
loss scenarios up to 30%, the baseline model experiences a sharp
degradation even with a small amount of pub noise, compared
to the no noise scenario. After this initial severe degradation,
increasing the noise (i.e., lowering the SNR) does not degrade
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the baseline model much further, and its performance stabilizes
after the initial drop.

In contrast, our model shows a much smaller degradation
when pub noise is introduced compared to the no-noise scenario,
and its performance gradually worsens as the SNR decreases,
finally breaking at 0 SNR. This indicates that our model can re-
cover from packet loss in moderate noise, a common real-world
scenario.

Fig. 15 depicts the Reverberation and Packet Loss scenario:
Reverberation combined with packet loss follows a similar trend,
with our model outperforming the baseline consistently across
RT60 values. However, the gaps between RT60 levels are smaller
than those for white or pub noise. The gaps are also pretty
consistent, adding a few absolute WER percentages for each
RT60 across packet loss rates with no “breaking point.” At lower
packet loss rates (below 20% ), the gap between low RT60s
(under 0.5) is very small for the models.

We see general trends across all noises when layered with
packet loss. Effectiveness in Moderate Conditions: Across all
noise types, the most significant improvement from our model
over the baseline occurs in moderate noise and packet loss
conditions. For example, when packet loss is below 20%, and
noise is moderate (e.g., SNR 4-8), our model maintains a much
lower WER than the baseline, which breaks at this point. This
highlights the practical utility of our model in real-world scenar-
ios, where packet loss and noise often coexist but are not extreme.

Limited Gains in Severe Conditions: While the packet loss
concealment alone is adequate even in very high loss rates, in the
layered scenarios, as the packet loss rate rises beyond 40%, the
absolute WER gaps between models shrink, and the performance
of our model converges toward really high WERs and even with
keeping a 50% difference in WER between our model and the
baseline the improvements are less useful at such a high WER.

Noise-Specific Behavior: The nature of the noise also plays a
crucial role. White noise allows for more substantial improve-
ments in WER, likely due to its stationary nature, whereas
pub noise presents more challenges due to its unpredictability
and overlapping speech. Reverberation affects both models less,
indicating a more baseline robustness to this type of noise.

Finally, to better reflect realistic deployment scenarios,
we conducted an additional evaluation combining all three
distortion types simultaneously. Specifically, we applied random
RIRs between 0.1 and 1.5 RT60s, overlaid additive noise at
random SNRs between 8 and -4, and introduced 20% packet loss.
In this highly challenging condition, our model achieved a WER
of 42% on the ALLSSTAR dataset, significantly outperforming
the Whisper baseline, which yielded 66% . This result further
supports the robustness and practical utility of our proposed
method in real-world environments.

VI. CONCLUSION

This study introduced a novel approach for enhancing the
robustness of large ASR models in both packet loss and noisy
scenarios. The proposed method integrates a smaller adaptation
model specifically designed to modify the input features of the
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ASR system. The model is trained with the ASR model loss func-
tion while keeping the ASR model frozen. While our implemen-
tation utilizes Whisper and its cross-entropy loss, the approach
is not inherently tied to Whisper or cross-entropy. The adapter
network could be trained using gradients from any differentiable
ASR loss, including CTC, transducer losses, or other token-level
objectives. The only requirement is that the ASR model provides
a gradient signal with respect to its input features, which is a
property shared by most end-to-end ASR systems.

Our results demonstrate that this integration improves ASR
robustness against packet loss and noise, particularly when
packet loss is combined with noise. More moderate improve-
ments are observed in other noise conditions when the adaptation
network is trained using the gradients of a larger ASR model. We
analyzed the model outputs and found that the model maintained
or improved STOI scores while having very low PESQ. This
indicates that the model preserves ineligibility that correlates
with WER and does not prioritize sound quality perception.

The promising outcomes of this approach open up several
avenues for future research in ASR development. Future studies
could explore the applicability of this method in improving the
robustness of ASR models against additional noise types, such
as clipping and echo suppression. Another interesting direction
would be to explore the role of the pseudo-language model
in reconstruction by systematically dropping entire words and
analyzing the perplexity of the reconstructed sentences versus
the original sentences.
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